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Zeeman levels of shallow acceptors in cubic semiconductors 

W 0 G Schmitt, E Bangert and G Landwehr 
Physikalisches Institut, Umivmit& Wiinburg, 8700 Wiinburg, Federal Republic of 
Germany 

Received 14 February 1991 

Abstract. A detailed theory for the Zeeman splitting of shallow acceptors in cubic 
semiconductors is presented, allowing for cubic contributions from the band stmc- 
t-, magnetic field orientations B 1 1  [OOl], [lll], [110] and large magnetic fields B. 
Practically exact solutions are achieved by taking the contributions of higher angular 
momenta into account. We calculate the Zeeman splitting of the ground state and 
the first excited odd-parity states. By also determining the probability for transitions 
between these states we succeed in a reasonable interpretation of the experimental 
results for Ge and GaAs. We tabulate g-values for *wide range of Lutt- parame. 
ters. A description of the Zeeman splitting in terms of a linear field dependence only 
proves to be accurate for limited field strengths. 

1. Introduction 

The electronic states of shallow acceptors in cubic semiconductors have been studied 
thoroughly in the last two decades both experimentally and theoretically. The pioneer- 
ing work of Baldereschi and Lipari (1973, 1974), who formulated the acceptor problem 
in terms ofspherical tensor operators, allowed the acceptor states to be calculated with 
reasonable precision, so that a quantitative interpretation of the experimental results 
became possible. In the majority of the investigations different acceptor species in 
germanium and silicon were considered. In these materials various experimental .ech- 
niques such as infrared absorption (Soepangkat and Fisher 1973, Schubert et al 1989, 
Atzmiiller et  a1 1991a,b), photoconductivity (Kirkman et ~l 1978, Broeckx et  ~l 1979, 
Jungwirt and Prettl 1989, Kamiura et  a1 1981), Raman scattering (Said et al 1987) 
and magnetoacoustic attenuation (Tokumoto and Ishiguro 1977) yielded well resolved 
spectra. All experimental results were interpreted with the help of numerical calcula- 
tions, which were based on Baldereschi’s theory. Excellent agreement was obtained, 
the central cell corrections of the acceptor ground state were accounted for by using 
a screened Coulomb potential (Bernholc and Pantelides 1977, Lipari and Baldereschi 
1978, Lipari el al 1980, Kanehisa and Said 1988). 

In more refined investigations the spectral line intensities were successfully anal- 
ysed by calculating dipole transition matrix elements (Binggeli and Baldereschi 1988, 
Clauws e l  ~l 1988). In addition, for uniaxially stressed Ge an accurate theoretical 
interpretation of far infrared (FIR) data was achieved by introducing the Picus-Bir- 
strain Hamiltonian to the acceptor problem (Broeckx and Vennik 1987, Fisher et  a1 
1985, Freeth et Q /  1986). Said et al(1986, 1987) applied the acceptor theory to ZnTe 
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in order to deduce the Luttinger parameters of this material from a comparison of 
calculated and observed optical acceptor transitions. 

The Zeeman splitting of boron and thallium acceptor states in Ge was studied 
systematically for the first time by Soepangkat and Fisher (1973). In 1979 Broecks 
et a1 performed quite similar experiments with Al acceptors but achieved a much 
higher resolution by using photothermal ionization spectroscopy. Jungwirt and Prettl 
(1989) extended some of these measurements to magnetic fields of about 6 T. For 
interpreting the data the theory of Bhattacharjee and Rodriguez (1972) was applied. 
This theory is based on symmetry considerations only, thus relating the Zeeman split- 
ting for different field orientations to one another, but leaving the real g-values as 
adjustable parameters. In addition the theory is restricted to the case of well isolated 
acceptor levels. This condition is violated, in particular, in Ge for relatively small 
magnetic fields, where the Zeeman splitting is comparable with the energy separation 
of neighbouring acceptor levels. 

Carbon acceptors in GaAs were investigated by two different groups. In 1978 
Kirkman el a1 observed the Zeeman splitting for fields up to 9 T by photoconductivity 
whereas Schubert el al (1989) and Atzmiiller et a1 (1991) analysed FIR transmission 
experiments. 

These new and well resolved results have encouraged us to address the old problem 
of calculating the Zeeman splitting of acceptor states based on t,he envelope function 
method. This is a very promising approach, because on the one hand this method gives 
the correct carbon acceptor states in GaAs with pratically no central cell corrections. 
On the other hand inserting a magnetic field into the Luttinger matrix is a well 
established procedure, which has yielded excellent results not only for bulk Landau 
levels but also in confined two-dimensional hole systems of heterostructures. 

The first attempt to calculate g-values by Lin-Chung and Wallis (1969) w a s  based 
on perturbation theory and variational wavefunctions. Lipari and Altarelli (1980) 
and Broecks and Clauws (1978) introduced a magnetic field in Baldereschi's tensor 
operators. These were the first propasals for a systematic treatment, however the 
calculations were rudimentary in nature. 

In section 2 of this paper we outline the acceptor model and the mathematical 
approach for a solution of the problem. First we derive the Zeeman Hamiltonian in- 
cluding terms quadratic in E in a 4 x 4 valence band k . p  model. Next we show how 
wavefunctions with the correct symmetry can be constructed for different orientations 
of the magnetic field B relative to the crystal axes. With these wavefunctions we can 
construct systems of differential equations acting on the radial parts of the wavefunc- 
tions, which determine the energy eigenvalues. After this the numerical procedure for 
a solution of these systems of equations is presented. The section ends by discussing 
transition probabilities and selection rules. Consequently, the formalism is applied to 
the two cubic semiconductors Ge and GaAs insection 3. The substantial experimental 
data for these materials are analysed in detail in our model calculations. In section 4 
we present more general results in form of tables of g-values, by which the Zeeman 
splitting linear in B can be described reasonably well for small fields. 

W 0 G Schmilt el a1 

2. Acceptor model and mathematical approach 

2.1. Linear and quadratic Zeeman Hamiltonian 

The key idea for the solution of the shallow acceptor problem is the transformation 
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of Luttinger’s k * p matrix for the kinetic energy of a valence electron into spherical 
tensor form. This was accomplished first by Baldereschi and Lipari (1973, 1974): 

H, = -k2 + p k f z )  . J(’) - 6 am(k(’) x J(’)):) + U(r) 
m=0,*4 

(1) 
67s+47z 6- 73 - 72 

a+4= 1 P =  57, 
m a, = - 

5 71 

Here we have used the effective Rydberg 

1 e4m 
Ro = ~ 2 ( 4 ~ c , ) ~ h ~  

as a unit of energy and the effective Bohr radius a, = ~7 ,4?rq ,h~ /e~m as a unit of 
length. Our definition of spherical tensor operators is somewhat different from that 
of Baldereschi and Lipari (1973). Given a vector a = (a=, ag,a,), we define ow first 
rank tensor a(,) by 

(see Edmonds 1960). Higher rank tensors can be successively constructed using Ed- 
mond’s rule: 

(AM B(j*))(j& = dilml,jzmz Ij12m12)Aml OdB(h), ml 

So we get k(z) := (k(’) x k(’))(’) and J(’) := (J ( ’ )  x J ( ’ ) ) ( 2 ) ,  J is the spin-: angular 
momentum operator. The corresponding spinors are the valence band Bloch functions 
“ M I !  (4 M, = f$, f% at the r point of the Brillouin zone. 

For the acceptor potential we use the phenomenological approach (Lipari el a i  
1980) 

m1m-r 

(2) 
2 
r 

U(,) = - (I + ( E  - 1)e-Or) 

where the parameter 01 can be selected for each impurity so that (1) gives the correct 
ground state energy. Note that this potential is spherically symmetric, i.e. in ansatz 
2 we have not taken into account the fact that the proper symmetry group of the 
potential of a substitutional impurity is at best T,. 

By Hamiltonian (1) we can describe acceptors with ground state energies which 
are small compared with the energy gap and the spin-xbit splitting. Otherwise 
more bands have to be taken into account. Therefore, narrow gap semiconductors 
and Si-for which the spin-orhit splitting is only 44 meV--cannot be treated within 
this model. In the case of zinc-blende crystals, terms linear in k are possible in H,, 
but their contribution is negligible (Dresselhaus 1955, Ranvaud et al 1979). As a 
consequence of this and simplifying ansatz (2) the symmetry group of H, is 0, and 
not just the subgroup T,. 
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The effect of an external magnetic field is included by substituting k - k + A  in 
Hamiltonian I f o  and by adding the standard term -2(~/y,)B(') J ( ' ) .  We use the 
gauge 

A = - ( B  1 x ~ ) & , 4 ( 1 )  = - L ( D ( l )  x p(l))(l). 
2 Jz 

By subsequent application of the angular momentum recoupling scheme (see ap- 
pendix A) the Hamiltonian can be ordered in terms of different powers of the magnetic 
field dependence: 

H = Ha + Hii, + Hqua (3) 
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2.2. Wawefunclions of proper symmetry 

The field-independent part H, contains a dominating spherically symmetric term and 
a cubic correction proportional to 6 which reduces the symmetry to that of the cubic 
group Oh. 

In the case of 6 = 0 the angular momentum L of the envelope function and the 
J = z spinors couple to the total angular momentum F = L + J which is a constant 
of the motion. Parity 7r is also conserved. Therefore an eigenfunction is a linear 
combination of all the 'spin-orbit parts' ILJFM,) that are possible for given F ,  MF 
and 7r = (-l)L. Using radial functions as'expansion coefficients, the wavefunction has 
the following form: 

and Yh, as spherical harmonics 
An example is 

I * ~ ~ ~ ~ )  = f i ( r ) i l z ; w  + f 3 ( . ) 1 3 ; 9 w  

Generally there are two spin-orbit parts for given F, M,, 7r. For F = 1 there is only 

equation (F = i). The former are obtained by applying Ho of equation ( 1 )  to the 
ansatz (6) and subsequently multiplying the result from the left by (L'JFM,I. Using 
the Wigner-Eckart theorem and the reduced matrix elements given in appendix B the 
following differential equations are found: 

one. Consequently we can construct two coupled radial equations (F 1) 2 or one radial 

where 

1 f o r F = L + -  L + 3  d- 
P L = - P  2 L + 3  2 

OIL = -p-  
2 L + 3  

3 for F = L + -  
L 

OL = p -  
2 L + 3  

3 ( L  + 1) (L  + 3)  
BL = -/ 2 L + 3  2 

a i + P i = p 2  7r = ( -1)L.  

For 6 # 0 F is no longer conserved. Therefore an infinite number of equations of 
type (7) are coupled by the cubic term of Hamiltonian (1). These large systems can 
be characterized by the representations Fl, 7r = fl, k = 6,7,8 of Oh, which provide 
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good quantum numbers. The wavefunctions are linear combinations of all spin-orbit 
parts ILJFr,m), that are possible for given r; and m: 

W 0 C Schmitl el aI 

I*r;m) = f L F ( r ) W ~ r , m )  ( 8 )  
F L  

as for example 

I%-;,,,) = f i ,e(r) l l i$rem) t f3,$(r)l3$5ram) 

t fl,t (41 1: f ram) + f3,+ ( r )  132" $ ram) 

t f3,;(r)13$gr,m) t fs,;(r)15Z$r,m) t . . . .  

Herein the cubic spin-orbit parts IF r,m) are linear combinations of the IFM,), that 
can be found by diagonalizing the matrix 

where fl4) is an arbitrary fourth-rank tensor that operates on the IFM,). This 
procedure yields, for example, 

The phases of the states IFr,m) relative to IFl',$) are chosen 60 that these states 
transform correctly according to the representations of 0, i.e. Fa states according to 
2)(3/2), rs states according to 'D('I2) and r, states according to r2 , 'D(1/2). The 
phase of, say, IFT,$) is arbitrary. More generally the spin-orbit part should be 
labelled IFrpm), because for F > in the decomposition of the full rotation group 
representation the representation rr; occurs more than once and is therefore 
numbered by L. 

With ansatz (8) we can again construct the system of coupled radial equations as 
mentioned earlier, this time by applying H ,  including the cubic term and projecting 
the result on (L'JF'rki'ml. In practice we reduce this system to a finite one by 
convergence criteria, which are discussed in the next subsection. 

When applying an external magnetic field, the symmetry is further reduced. The 
symmetry group is the common subgroup of 0, and C,,-the latter is defined by 
the direction of B-i.e. C,, for B 11 [OOl] ,  C3i for B 11 [lll] and C,, for B 11 (1101 
(see Koster el al 1963). The irreducible representations r: of these groups yield good 
quantum numbers for each orientation of B. 

We consider first the orientation B 11 [OOI]. The construction ofstates which trane 
form according to the irreducible representations r:, U = 5,6 ,7 ,8  of C,, is simple, 
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because there is a oneto-one correspondence between the components ILJFT,m) of 
the cubic representations and the r: representations (see table 1). Therefore a Zee- 
man sublevel of symmetry say r; is a superposition of all possible r;, m = 4 and 
'i', , m = a cubic functions: 

Again, for the radial functions fLFkr(r) a system of differential equations can be 
deduced in a similar way as before. It is important to notice that only the individual 
spin-orbit parts ILJFI 'pn)  coincide with the cubic ones-i.e. those of the case E = 
0-whereas the radial functions depend strongly on the magnetic field strength. 

Table 1. Relation between the quantum numbers r. (representation of a subgroup 
of 0) and the columns of Wigner's D-matrix D(-) labelled by m = -e,.. . ,e, see 

(9). 

c4 r" ra ra r7 re r8 rs r6 r7 
c3 ru r4 rs r, rs r, rr rs ra 
cz ru r3 r4 r4 r3 r, r3 r4 r3 

For the orientations B I] [ I l l ]  and B 11 [llO] the construction of wavefunctions 
adapted to the symmetry is more complicated, because the field direction is inclined 
to the [001]-quantization direction of the ILJFrkim) spin-orbit parts. 

To obtain the correct function for, say, B 11 [ l l l ]  one has to transform the 
ILJFT,tm) representation into an equivalent representation where the C,-rotation 
about the [Ill]-axis is diagonal. This transformation is performed by Wigner's 2)- 

matrix D(u)(R-') as defined by Edmonds (1960), where R = R(a, /3, y) rotates the 
[001]-z-axis into the [Ill]-direction (Re, = B / B ) :  

"=--U 

with ( a , k )  = (4,6), (?,7), ($,8). Generally, in the decompositionofD(F), F > 3 a 
representation ru, U = 4 , 5 , 6  of C,i occurs more than once. In order to distinguish 
between them they are numbered by i = i ( k , ~ , m ) .  The relationship between the 
columns m of the matrix d") and the representations ru is given in table 1. The 
Euler angles a, /3, y are given in table 2. The angle 7, which influences only the phase of 
l L J F r u i ) ,  is chosen in such a way that the matrix elements of all operators contained 
in the Hamiltonian H are real provided that the components of the cubic spin-orbit 
parts satisfy the phase relations ( F ;  I F r 6 $ ) ,  (F? I Fr,$), (F :  I Fr,:) > 0. Again 
a wavefunction of symmetry F: is a superposition of all possible ILJFr,i), ?r = (-l)L 
functions built according to  (9): 

' ?  

L F i  
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Table 2. Euler angles for rotations (rotation of the Game of reference, physical 
systemis fixed) that perform the transformation R(a,p,r)e. = BIB.  

o-rs,ra 0-r, 
C , :  R = l  0 0 0 0 
CJ: Riii  n/4 arccosl/fi 0 b 

G: Riio n/4 *I2 0 b 

For the orientation B 11 [110], states which transform according to the representations 
r3 and r4 of the group C,, can be formed by a similar procedure. 

The construction of wavefunctions with the correct symmetry for the Zeeman 
sublevels can be summarized as follows: rotatingt the quantization axis of the cubic 
spin-orhit parts by W'igner's 2)('/') or 'D(3/2) matrices into the direction of the applied 
magnetic field yields functions of the desired transformation properties. The various 
radial functions in the ausatz of type (10) are solutions of a complicated and large 
system of differential equations, which is obtained by applying Hamiltonian H to 
ansatz (10) and projecting it on (L'JFTUi'I .  This system depends on the magnetic 
field orientation and the field strength. The coefficients of these differential equations 
are calculated by a computer program, which, after storing the codcients, solves 
the corresponding equations numerically by the method described in the following 
subsection. 

2.3. Nuwen'cal recipes 

The large systems of coupled differential equations can only be solved numerically. 
We use neither a variational scheme such as that of Baldereschi and Lipari (1973) nor 
the finite element method as in Said el at (1986) but another technique, the 'matrix 
method', which bas proved to be very efficient for calculating the first few eigenvalues 
of a large system of differential equations all of which have a similar structure: When 
combining all n radial functions (e.g. n = 55 for E 11 [ l l O ] ,  see later) to a column vector 
+, the corresponding n differential equations can be reformulated as H R $  = E$,  where 
H ,  is a n x n matrix operator. Now we expand each radial function into a set of N 
(N = 20) basis functions hi. Consequently every matrix element of H ,  is expanded 
into a N x N matrix. Finally we have to diagonalize the (nN) x ( n N )  matrix that 
corresponds to H ,  numerically which can be done by standard procedures (EISPACK). 

For our hydrogen-like bound state problem we found the following functions to be 
most reasonable: 

Lip'(+) are the generalized Laguerre polynomials. Given the parameters a,y, the 
hi, i = 0,1,. . ., are complete and orthogonal with respect to the weight function r2. 
For even-parity states we have to set a = 0 whereas for odd-parity states we use 
a = 1, but (I = 0 will do as well. Using the parameter y we can fit the extension of 

t As a mtation of a state IFrkm) would came II rotation 01 its components by the matrix D(F), it 
would be better to use the term 'unitary transfonnation'insteadof 'rotation of the quantization axid 
for F > $. 
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the functions h$")(yr) to that of the real wavefunctions. 7 shows a slight dependence 
on p and 6, but neither the eigenvalues nor the eigenfunctions depend on 7 if it is 
restricted to a physically relevant interval. 

Figure 1 demonstrates that we obtain practically exact eigenvalues from finite 
instead of infinite matrices. It is shown that by including spin-orbit components with 
total angular momentum up to F = excellent convergence is achieved for SalZr 

P51z states. This leads to eighteen coupled differential equations for the ra 
states, ten equations for the r7 states and nine equations for the rS states. (Note that 
the full rotation group representations for F = z ,  F = y ,  F = 9 decompose into 
two different Fa representations each.) 

i 

~ 3 5 7 9 11 13 15 17 sph iF=- - 
: 2 2  2 2 T T T T  

Figure 1. Energy levels of the gmund state and the b t  three odd-parity excited 
states in dependence on the maximal F up to which the sum in equation (8) extends. 
For comparison the eigenvalues of the states nLp in the spherical model are given 
on the left. Note that 'convergence' is achieved for F = + 4. (The Luttinger 
parmetem are those of GaAs.) 

For F < there are all together 110 spin-orbit components for each parity. 
For B 11 [OOI] these functions decompose into 27 functions of symmetry rS or r6, 
respectively, and 28 of symmetry r7 or I?,, respectively. As there is no degeneracy 
for B f 0, the number of coupled radial equations equals the number of spin-orbit 
components. So one has to solve systems of 27 or 28 coupled radial equations. For 
B 11 [I111 the 110 functions decompose into 37 of symmetry r4 or and 36 of 
symmetry r6, whereas for B 11 Ill01 the decompositionis into 55 functionsofsymmetry 
r3 or r4, respectively. 

2.4. Ransition probabilities and selection rules 

The interaction of a valence band electron with the radiation field is treated as a 
perturbation. When neglecting second-order terms in the radiation field and using 
the dipole approximation, we find according to Fermi's Golden Rule the probability 
for a transition from state i to f: 
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where A is the modulus of the vector potential d determined by the radiation field 
E = -(a/at)A, c = d/d is the polarization vector, f ( E )  is the Fermi distribution 
function and ( l /mo)s  is the velocity operator 

W 0 G Schmiff e t  a1 

1 ti 1 
x = - p + -  2u x VV = i;[H,r]. 1 - 

mo mo 4m0c 

In order to evaluate the matrix elements of the velocity operator,which equals 
ti-'(~/ab)XEMA in the effective mass approximation (EMA), we make use of the 
last part of (12): 

where the dipole operator r is simply T times the unit matrix in EMA. 

excited state) the Fermi energy is determined by the equation 
For temperatures T with kT < E, - Ej (f is the ground state; i, the odd-parity 

P=l 

with cy denoting the four Zeeman sublevels of the lS,,z~a ground state. This arises 
from the fact that three of the four states are occupied by electrons or, to put it in 
another way, the Fermi level is pinned to the sublevels of lS,,zra. 

The dipole operator transforms according to the representation r; of Oh (keep in 
mind that we use the full cubic group Oh hs the symmetry group for B = 0). From the 
matrix elemen? theorem we find the following selection rules (B = 0) for transitions 
from r p  to r;,, where rk,  rk' = r6, r7, ra and x ,  x' = & I :  

rS r6 r7+r7  ra3r8 r6 ++r8 r7 c* ra = -1. 

For B f 0 we have to distinguish between the different orientations of B .  Given 
the representations according to which the three components of r(l) transform (see 
table 3), we find the selection rules to be as given in table 4. When light propagates in 
a direction perpendicular to B (Voigt configuration), a transition Ti -+ r, is possible 
for E 1) B if the matrix element (r,J$)Jri) does not vanish or for E I B if either 
(r,lry!lri) or (r,l$~lri) does not vanish. On the other hand, if light propagates in a 
direction parallel to E (Faraday Configuration), a transition Pi -+ r, can be observed 
if either (r,/$jlri) (for right-circular polarization) or (I',Jrl'?lri) (for leftcircular 
polarization) does not vanish. 

Table 3. Representations according to which the mmponents oIr(l) transform 

3.0 '+ r- 

We would like to emphasize that our selection rules are different from those that 
are obtained when the symmetry group is assumed to be Td (cf Bhattacharjee and 
Rodriguez 1972). 
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3. Application to experimentally investigated acceptors 

3.1. Acceptors in Ge 
Since the Luttinger parameters yl, yz, y3, K ,  of Ge are very well known, it is quite 
reasonable to test our theory with acceptors in Ge. To obtain the theoretical Zeeman 
spectrum we use y1 = 13.35, y2 = 4.24, y3 = 5.69, K = 3.41, E = 15.36 as input values 
and perform numerically all the calculations described earlier. The ground state is 
computed without the screening term in the potential, i.e. a = m in equation (2). As 
a first result we obtain four B-dependent Zeeman levels for the ground state 1S3/,I', 
as well as for the excited states 2P3/Jn, 2P5 aI'n, 3P3/J, and two levels for the 
excited state 2PslzI', (see figure 2). Before discussing the B dependence of these 
levels in detail, we compare the transition energies between the various Zeeman com- 
ponents according to the selection rules of table 4 with the experimentally observed 
line positions of FIR spectroscopy. We plotted the results of Soepangkat and Fisher 
(1973) (lines D and C for polarization E 11 B and line G) and the better resolved 
results of Broeckx et a1 (1979) (lines D and C for polarization E I B). The usual 
notation for the spectral lines is: GS2P3,Jn -+ lS,,zI'n, D22P,l,I', -+ lS,lzI'a, 
Ct2PslzI', -+ 1S31zI'a. Note that for B > 0 there may be additional contributions 
to the split C line from neighbouring Zeeman levels. The experimental values are 
represented by the broken lines in figure 3. All other lines-full as well as dotted 
lines-correspond to the calculated energy differences for transitions, which are al- 
lowed according to table 4 for the polarizations indicated. The small chemical shift of 
the AI and B acceptors is suppressed in figure 3, because we found that the Zeeman 
splitting of the ground state for a finite but large a is about the same as that for 

[OOl] and the 
polarization E 11 B did the four measured lines correspond to just four allowed transi- 
tions. For all other cases there are more allowed than observed transitions. Therefore, 
a reasonable interpretation of the spectra is possible only if the transition probabili- 
ties are calculated additionally and the observed lines are attributed to the strongest 
transition. The method we used for this calculation is outlined in section 2.4 and the 
results are indicated in figure 3 as full lines for strong and as dotted lines for weak 
transitions. Without going into the details the meaning of strong and weak transitions 
can be explained by two examples. First we consider the G line, B 11 [OOl], E I B 
(figure 3(a), left, bottom). For the eight allowed transitions we found the relative 
intensities for B = 2 T ordered from top to bottom: 49.6, 0.1, 0.0, 29.0, 0.4, 14.6, 6.1 
and 0.2%. Noting that the higher of the two observed lines lies just between the strong 
transitions 7 -+ 6 (49.6%) and 5 -+ 8 (29.0%) it was interpreted as the unresolved 
superposition of these two transitions. Indeed Soepangkat and Fisher (1973) specified 
an experimental resolution of 0.1 meV, which is as large as the separation of both 
contributing lines at the highest fields applied. The second observed line is uniquely 
identified as the 6 -+ 5 (14.6%) transition, because its energetic position is close to 
the next strong theoretical l i e .  

This detailed discussion of one of the fourteen spectra of figure 3 shows that a 
onet-one interpretation between experimental and theoretical lines is not normally 
possible, because the finite experimental resolution often merges two or more strong 
transitions into one line. 

As a second example we consider the ten allowed transitions of the D line multiplet 
with B 11 11111 and E I B for B = 2 T (figure 3(b), left). The relative intensities 

a = m .  
Only for the Zeeman multiplet of the D line for the orientation B 
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Table 4. Components old') for which the matrix elements of the form (i-'jlk)lI'i) 
can be diflerent from zero for the orientations ( a )  B 11 [OOl], ( a )  B 11 [lll] and (c] 
B 11 [IlO]. r, is given in the fist row, l'l is givm in the hrst column. 

(a) 

of these transitions ordered from top to bottom are: 23.5, 0.1, 9.6, 6.0, 4.5, 0.1, 21.1, 
27.1, 0.9 and 7.1%. The highest and the lowest observed transitions can uniquely be 
assigned to the strong transitions 6, -+ 4 (23.5%) and 4 --c 6, (7.1%), respectively. 
The second highest observed line is reasonably interpreted as a superposition of the 
three transitions: 5 -f 6, (9.6%), 5 + 4 (6.0%), 5 +. 6, (4.5%). The remaining 
third highest observed line is again caused by a superposition of the two transitions 
6, -+ 5 (21.1%) and 4 -+ 6, (27.1%). Both individual transitions are very strong, but 
the experimental resolution of Bmeckx el 4l  (1979) of 0.06 meV is larger than the 
separation of these levels. 

Both examples show how a careful comparison of theoretical with experimental 
results can be performed for all the applied magnetic field orientations and polariz* 
tions of the light. Since the Luttinger parameters, that are determined From quite 
different experiments, are the only input values and no fitting parameter is involved, 
the agreement between experiment and theory can be considered to be excellent. 

The most striking results were found for the C line. The Zeeman fans correspond- 
ing to the close lying states 2P,/J, and 3P3/J, merge into one another, so that a 
large number of allowed transitions appears in a small energy interval. Therefore, it is 
very satisfactory that the observed lines are only close to the strong transitions. It is 
clear from our consideration that the Zeeman fan of the C line cannot be attributed 
only to 2p6.,~r, as stated by Soepangkat and Fisher nor only to 3P3,Ja ag discussed 
by Broeckx ei 4l as it contains both components for finite magnetic fields. Indeed, 
on analysing the character of the wavefunctions, a strong mixture of the rS and r7 
contributions was found. 



Zeeman levels of shallow acceptors in cubic semiconductors 6801 

From these results it is evident that the magnetic-field-dependent effective maSS 
description of the acceptor works very well. 

Figure 2. Zeeman levels of the ground state and the first few excitedstates of odd- 
parity against magnetic field for the three main symmetry orientations. For B = 0 
Balderechi's notation is used. Far B > 0 the Zeeman lev& are denoted according 
to the irreducible representations: P;, I-;, r;, r;, of C l h  for B II [OOl]; r;, r;, 
r:, of Csi for B II [ill]; and r;, r:, of C Z h  for B II [iio]. For convenience r: is 
abbreviated by U. 

In figure 2 we present the Zeeman levels for the three orientations B 11 [OOl], B I/ 
[l l l] ,  B 11 [110] of the ground state and the first few excited states for field strengths 
up to 10 T as the main result of our calculation. The anisotropy of the valence band 
is clearly visible in the acceptor spectrum when the different field orientations are 
compared. The Zeeman splitting of the ground state for B = 3 T is only about one- 
third of that of the first and one-sixth of that of the second excited state, but it is 
comparable with the separation of neighbouring levels of the excited states. Therefore, 
an interpretation of the infrared spectra based on the assumption of negligible ground 
state splitting, which was proposed by several authors, is not tenable and will not result 
in a unique assignment of the observed lines to the theoretically predicted transitions. 

An exception from this general rule is the Zeeman fan of the D line. A glance 
at figure 3 shows that the unresolved transitions might be attributed to an unsplit 
ground state. Therefore, from their careful analysis of the D line, Broeckx et nl  found 
the correct line assignments and deduced g-values for the 2P,,Ja level, which differ 
only about 20% from our calculated results: 

BT g; = 2.76 } { g i  = -2.29} 
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Calculated values 
(our theory) g i  = -1.86 

where BT means Bleaney's transformation (Bleaney 1959), which is necessary because 
Broeckx et a /  (1979) used the T, notation, whereas for ow theory we applied the Oh 
notation. For the calmlation of g-values see section 4. 

Figure 3. Calculated line spectrum (fuU and &tted hes) a p h t  mawetic field for 
the Ge G ,  D and C lines. Broken lines refer to the experimental data of Soepangkat 
and Fisher 1973 (SF) or Broedrx et of  1979 (Bc). (a) B [I [Wl]. 

Finally we would like to point out the very remarkable fact that the linear depen- 
dence of the Zeeman levels on the magnetic field is restricted to very small magnetic 
fields. Excluding the highest indicated states 2P,/.9', and 3P,/J, a Linear dependence 
yields a quantitative description only up to about I T. For the orientation B 11 [111] 
this range is even much smaller as can be hypothesized from the fact that the linear 
Zeeman splitting is symmetric with respect to the B = 0 level and this symmetry 
has already disappeared close to B = 0. Thus, we conclude that a description of the 
Zeeman effect in terms of g-values has limited significance. Furthermore, we tried to 
describe the Zeeman levels in terms of linear and quadratic B dependences according 
to the formulae of Bhattacharjee and Rodriguez (1972) for the different field orient- 
tions. It was found that for all states-including the ground state-and fields of about 
10 T the calculated Zeeman spectrum is a long way outside the range of validity of 
this theory. 

9.2. Accepiors in GaAs 

For acceptors in GaAs, the literature offers experimental Zeeman spectra obtained by 
two groups. Kirkman et a1 (1978) published photoconductivity data for the D and C 
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Figure S. (a) B 11 [Ill]. 
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Figure 3. (c)  B 11 [IlO]. 

line for magnetic fields of orientation [OOl]  and strengths up to 9 T. The Wiirzburg 
group (Schubert et al 1989, Atzmiiller et  a1 199la,b) presented a more complete set 
of data from transmission experiments for the three orientations B 11 [OOl], B 11 [ I l l ]  
and B 11 Ill01 and fields up to 7 T. In particular the Zeeman splitting of the GaAs 
G line is resolved for the first time by this group. Both groups studied the carbon 
acceptor, which is suitable for comparisons with theoretical results because of its 
negligible central cell correction so that the bare Coulomb potential can be used for 
the potential energy in equation (2). 

These acceptors in GaAs have a binding energy which is larger by a factor of 
about 2.5 than that in Ge. Therefore, the wavefunctions are less extended and lead 
to smaller Zeeman splittings. This disadvantage is compensated for by the higher 
magnetic fields which were applied experimentally, so that, because of almost equal 
resolutions, the experimental information on both systems is equivalent. horn the 
theoretical point of view there is an essential difference between both systems because 
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the Luttinger parameters y,, y2, y3, IC, of GaAs are not known as precisely as those 
of Ge. This is very important because the Zeeman splitting depends in a sensitive 
manner on these parameters. Utilizing this dependence we proceed as follows: first we 
select a few lines of the Zeeman spectrum, which are clearly resolved experimentally 
and can be attributed uniquely to transitions between definite sublevels. Then we fit 
the calculated line positions of these transitions to the measured ones by optimizing 
the Luttinger parameters. Finally we compare all the other absorption lines with o w  
calculations based on the deduced parameters. 

W 0 G Schmitt ef a i  

Figure 4. Zeeman levels of the ground state and the &t few excited states of 
odd-parity against magnetic field for the three main symmetry orientations. 

By presenting some examples we will demonstrate how suitable transitions can be 
selected. Figure 5 presents the Zeeman components of the G line (2P3/J8 -+ 1S3lzf8) 
for orientation B 11 [I101 and polarization E I B .  The corresponding transition 
probabilities which were calculated according to equation (U), are shown in figure 6. 
The curves contain the magnetic field dependence of both the dipole matrix elements as 
well as the level occupation. The transition 3, -+ 4, is the strongest one and therefore 
it is associated with the observed component B in the spectrum for 7 T shown in the 
insert of figure 6. The level 4, (symmetry r,) can be identified from figure 4 as the 
ground state of the acceptor. This fact is responsible for the strong increase in the 
transition probability with increasing magnetic field. The second intense transition 
4, + 3, is attributed to the observed component C. More information about the 
line intensities for different magnetic fields is shown in Schubert el ai (1989). A s  one 
further line, which enters our fitting procedure, we consider the transition 3, + 4, 
of the split D line (2P,/Ja -+ 1S3/Ja) described in figures 7 and 8. This is by far 
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ElmeV 

15 

Figure 5.  Calculated line spectrum (full and dotted lines) against magnetic field 
for the GaAs G line, E I B (1  [110]. Broken lines and capital letters refer to the 
experimental data of Sdwbert et d. 

the strongest transition and therefore associated with the observed component S. In 
addition this line ha..the largest transition energy of the D line fan, thus supporting 
our interpretation of it a. a transition between both extreme Zeeman levels of the 
1S3/J& and 2P3/J8 states as can be seen from figure 4. 

WlWO 
0 . 0 1 4 0  

Figure 6. Transitionprobability wit/- = (Er - Ei)zilf(E,)(l- ,(E,)) (in a.) 
against magnetic Eux density for the G a b  G line, E I B I( [llo]. The insert shows 
an experimental spectrum of Schubert et al. 

After selecting eight further line components for the other orientations by similar 
considerations, we performed the parameter determination by an extensive numerical 
calculation and obtained the values given in table 5. The difference y3 - 'yz = 0.68, 
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which defines the magnitude of the anisotropy of the valence band, is ia good agree- 
ment with the results of other experiments. The value 7, = 6.65 is smaller than all 
the others, but close to the latest ones. The value n was not vaned in our fitting 
procedure, but nevertheless it closely obeys the relation 7] - 2y2 - 3y3 + 3n + 2 = 0 
("rebin e l  el 1979), which proves that our parameters are reliable. Recently Said and 
Kanehisa (1990) published Luttinger parameters (see table 5 )  extracted from exciton 
energies that are quite different from our results. As the excitonic spectrum is domi- 
nated by the small effective electron mass, their determination is indirect. Indeed their 
reproduction of the acceptor spectrum directly measured by infrared spectroscopy is 
less accurate using their parameters than ours. 

W 0 G Schmiit et  a1 

ElmeV 

19 

l80 2 4 6 BIT 
Figure 7. Calculated h e  spect- (!U and dotted lines) against msgnetic field 
for the G a b  D line, E I B [I [llO]. Broken lines and underlinedlettem refer to the 
experimental data of Atsmiiller CI a l  1991a. 

Table 5. Sets of Luttinger parameters Lom some other authors in comparison with 
OUT values for G A S .  Mhennore,  we use c = 12.56. 

Authom 71 n n I( 

Vrehen 1968 7.2 2.5 2.5 1.1 
Sei6Yan el  01 1973 7.1 2.32 2.54 - 
Hem el al 1976 6.85 2.1 2.9 1.2 
Skolaick et SI 1976 6.98 2.2 2.88 1.2 
Neumann et d 1988 7.17 2.88 2.91 1.81 
M o l e h p  e l  ol 1988 6.79 1.924 2.681 - 
Jael1989 6.98 2.06 2.9 1.1 
Hewing 1990 6.79 1.92 2.64 1.2 
Present work 6.65 1.95 2.63 1.1 
Saidand Kanehisa 1990 7.20 2.15 3.05 - 

Now, let us describe the results based on our Luttinger parameters. The over- 
all energy spectrum of a Coulomb-like acceptor in GaAs is shown quantitatively in 
figure 9. The first twenty energy levels are drawn for each representation and some 
are labelled according to the notation introduced by Baldereschi and Lipari (1974). 
Testing the sequence of the levels over the physically relevant Luttinger parameter 
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Figure 8. 'Itansition probability w;t/wo = (Ef - E;)z;jf(E;)(l- f(Ef)) (in au) 
against magnetic Elu density for the GaAs D line, E I B 11 [110]. The underlined 
letters refer to the experimental data of Atzmijller et al 1991s. 

intervals, we found that only from 1S3,Js down to 2P,$, was the ordering of the 
levels the same for all semiconductors. 

Next we consider the plots of the energy spectra against magnetic fields of up to 
10 T for the three main orientations which are shown in figure 4. Again the anisotropy 
of the system is clear. For the ground state and the first two excited states the Zeeman 
sublevels are nearly linear or only slightly curved. This is different from the Ge case 
and is caused by the smaller values of co and -yl, which enter the theory in the form of 
the scaling parameters in Ro and Po defined in section 2.1. Another difference from Ge 
is that the sequence of the levels is sometimes changed. For instance the ordering of 
the sublevels of the Ge ground state is re, r,, re, rs for 1 T i n  contrast to GaAs, where 
the sequence is re, r5, rS, r,. This clearly demonstrates that the Zeeman splitting 
is sensitive to small variations in the Luttinger parameters ((pGe - pcanS)/p = 7%, 
A6/6 = 6%). Whereas the Zeeman splitting of the first three levels is compatible with 
experimental results (see later), the residual levels are theoretical predictions. 

Finally we compare the theoretically calculated and measured Zeeman spectra. 
A restriction to the polarization E I B is reasonable because in this case more 
and better resolved lines are observed than for E 11 B. In figures 5, 7 and 10 full 
curves correspond to calculated strong transitions and dotted lines to calculated weak 
transitions, whereas the broken lines indicate experimentally determined Zeeman fans. 

To begin with, we consider the G line for E 11 [llO] (figure 5). The strongest 
lines B, C (see figure 6) have already been used for our parameter determination. 
Transitions D and F are nearly independent of the magnetic field strength. This fact 
is reasonably well confirmed by experiment (Schuhert et al 1989). Line A consists of 
two unresolved transitions. As is shown in figure 6, their intensities as well as that of 
line A' decrease strongly with increasing magnetic fields. This behaviour is roughly 
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Figure 9. Overall energV spectrum of GaAs ( B  = 0) for a Coulomblike amptor. 
For each representation r; of Ob the fvst twenty levels are drawn. Some of them 
are denoted according to Balderechi and Lipari. 

the same as that recorded in the experiments. 
Without going into the details, we would like to point out that in all other cases 

the agreement between theoretical and experimental line intensities is similar to the 
example just discussed explicitly. 

In figures 7 and 10 we present a comparison between the calculated and measured 
Zeeman fans. It is remarkable that for each calculated transition with a large transition 
probability there is just one experimental line. In the D line fans two close-lying 
transitions merge into one another and contribute to a single line three times. The 
experimental D line spectra coincide satisfactorily with our calculated line positions. 
Concerning the G line we find a similar coincidence except for the components Y 
(B 11 [OOI]) and T (E 11 [ill]). Both lines cannot be attributed to a strong transition. 
Component Y lies close to the weak transition 7 + 8. In fact, the reason for the 
appearance of these extra lines is not clear. From the theoretical point of view this 
can neither be explained by a more accurate determination of the Luttinger parameters 
nor by screening the Coulomb potential, because the line intensities do not depend 
strongly on the Luttinger parameters or the screening length. 

4. g-values of acceptor states 

Up to now we have applied our theory to two materials by using two special sets of pa- 
rameters. The accurate description of the extensive experimental results encourages 
us to present a more general application of our model calculations. For the physi- 
cally relevant parameter interval we compute the simplest quantities which aUow the 
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Figure 10. Calculated line spectrum against magnetic field for the GaAs G (Schu- 
bert et el) and D line (Atzmiiller et  e l  t991a). Broken lines refer to experimental 
data. 

Zeeman splitting of the fourfold degenerate states 1S,121’a, 2P3,Ja, 2P,12~a-the 
g-values-to be described. 

By these values one can obtain a survey of the splitting pattern. A more accurate 
description is possible only by listing higher order coefficients for each parameter set, 
each Zeeman sublevel and each orientation (see section 3.1, last paragraph). 

The g-values, gm, m = i, are defined and calculated by 

(%;mlH~in(E II [OOll)l%~m) = mgmpBB (13) 

where 
tion (4). The g, can be obtained as 

is given by equation (8) and the (reduced) Hamiltonian by equa- 

m = ’ 3  
Sm = Y1 Wm,2 2 ’ 2  

from the tables 6, 7 and 8, where gm,l and gm,z are listed independently of j i  and S. 
The right-hand side of equation (13) directly gives the linear Zeeman effect for the 

orientation B 11 [OOl]. For E 11 [lll], B 11 Ill01 one has to calculate the Rodriguez 
quantities g;, gi (Bhattacharjee and Rodriguez 1972) by the following relations: 

1 - 9  1 91 - zg1/2 - Hg3/2 

S’z = -$S,/z 4- 493,2. 

These quantities allow us to evaluate the splitting by the more complicated formulae 
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Table 6. Energy ( i  au) and 9-values gm,i and gm,z (for a description see text) for 
the groundstate 1S,,2rs. 

ll S E  Qt.1 gt.2 9a.i gt.a 
~~ 

0.65 0.00 1.6534 0,2909 -1.6953 0,2909 -1.6953 
0.65 0.05 1.6642 0.2796 -1.7623 0.2895 -1.6837 
0.65 0.10 
0.65 0.15 
0.65 0.20 
0.65 0.25 
0.70 0.00 
0.70 0.05 
0.70 0.10 
0.70 0.15 
0.70 0.20 
0.70 0.25 
0.75 0.00 
0.75 0.05 
0.75 0.10 
0.75 0.15 
0.75 0.20 
0.75 0.25 
0.80 0.00 
0.80 0.05 
0.80 0.10 

0.80 0.20 
060 0.25 
0.85 0.00 
0.85 0.05 
0.85 0.10 
0.85 0.15 
0.85 0.20 
0.90 0.00 
0.90 0.05 
0.90 0.10 
0.90 0.15 
0.925 0.00 
0.925 0.05 

0.80 0.15 

1.6965 
1.7522 
1.8357 
1.9549 
1.8570 

1.9192 
2.0007 
2.1256 
2.3110 
2.1450 
2.1694 
2.2432 
23748 
2.5852 
2.9204 
2.5802 
2,6236 
2.7566 
3.0045 
3.4375 
4.2520 
3.3087 
3.4024 
3.7009 
4.3230 
5.7288 
4.7683 
5.0595 
6.1227 
9.7992 
6.2279 
6.9030 

18725 

0.2611 -1.8185 
0.2363 -1.8657 
0.2065 -1.9053 
0.1736 -1.9390 
0.3372 -1.6430 
0.3321 -1.7210 
0.3201 -1.7862 
0.3031 -18411 
0.2831 -1.8882 
0.2631 -1.9308 
0.3856 -1.5856 
0.3892 -1.6778 
0.3867 -1.7544 
0.3809 -1.8196 
0.3757 -1.8781 
0.3759 -1.9382 
0.4351 -1.5228 
0.4516 -1.6349 
0.4630 -1.7272 
0.4748 -1.8085 
0.4943 -1.8917 
0.5329 -2.0123 
0.4845 -1.4541 
0.5213 -1.5970 
0.5552 -1.7154 
0.5998 -1.8348 
0.6790 -2.0307 
0.5319 -1.3789 
0.6056 -1.5799 
0.6892 -1.7673 
0.8651 -2.1876 
0.5538 -13385 
0.6627 -1.5975 

0.2837 -1.6654 
0.2734 -1.6407 
0.2583 -1.6096 
0,2382 -1.5717 
0.3372 -1.6430 
0.3347 -1.6294 
0.3269 -1.6081 
0.3136 -1.5793 
0.2944 -1.5428 
0.2- -1.4982 
0.3856 -1.5856 
0.3814 -1.5694 
0.3706 -1.5439 
0.3529 -1.5094 
0.3275 -1.4653 
0.2927 -1.4098 
0.4351 -1.5228 
0.4284 -1.5027 
0,4131 -1.4712 
0.3882 -1.4279 
0.3515 -1.3706 
0.2964 -1.2897 
0.4845 -1.4541 
0.4737 -1.4280 
0.4503 -1.3863 
0.4112 -1.3259 
0.3427 -1.2263 
0.5319 -1.3789 
0.5129 -1.3410 
0.4706 -1.2754 
03617 -1.1079 
0.5538 -1.3385 
0.5266 -1.2888 

given in the paper of Bhattacharjee and Rodriguez (1972)t. As a rule of Lhumb these 
formulae are useful for magnetic fields up to onefifth of Po. 

Because of the importance of Ge and GaAs we give the explicit g-values according 
to equation (14) in table 9. 

As the selection rules are different for transitions between states that are char- 
acterized by the representations of the group Oh and those characterized by T,, one 
has to be careful whenever g-values determined by authors working with T, have to 
be compared with ours (see Atzmiiller el al 1991a, section 4.2). When taking into 
account the fact that the Zeeman levels of the ground state lS,,Ja are labelled by 
the same quantum numbers-thus the splitting is described by the same g-values-we 

t Assuming Oh to be the symmetry group we obtain the same Hamiltonian matrices 86 Bhattacharjee 
and Rodriguez did by using Td 86 the symmetry group. Therefore, the resulting energy formulae 
have the same form in both cases. 
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Table 7. Energy (h au) and g-values gm,i and gm,z (for a description pee t e x t )  for 
the state 2P,lZrs. 

l r 6 E  91.1 g+,z q , 1  g,,z 

0.65 
0.65 
0.65 
0.65 
0.65 
0.65 
0.70 
0.70 
0.70 
0.70 
0.70 
0.70 
0.75 
0.75 
0.75 
0.75 
0.75 
0.75 
0.80 
0.80 
0.80 
0.80 
0.60 
0.80 
0.85 
0.85 
0.85 
0.85 
0.85 
0.90 
0.90 
0.90 
0.90 
0.92 
0.92 
0.92 - 

0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.00 
0.05 
0.10 
0.15 
0.20 
0.00 
0.05 
0.10 
0.15 
0.00 
0.05 
0.10 - 

0.6602 
0.6666 
0.6858 
0.7190 
0.7691 
0.8417 
0.7672 
0.7765 
0.8045 
0.8535 
0.9297 
1.0460 
0.9172 
0.9319 
0.9764 
1.0567 
1.1890 
1.4124 
1.1423 
1.1686 
1.2496 
1.4054 
1.6966 
2.3373 
1.5177 
1.5749 
1.7609 
2.1815 
3.3872 
2.2685 
2.4482 
3.1651 
7.1276 
2.8316 
3.1795 
5.0477 - 

0.2708 -1.3236 
0.2899 -1.6089 
0.2969 -1.8972 
0.2884 -2.1762 
0.2627 -2.4344 
0.2198 -2.6637 
0.3192 -1,3079 
0.3421 -1.6017 
0.3509 -1.8963 
0.3431 -2.1810 
0.3178 -2.4461 
0.2754 -2.6842 
0.3677 -1.2917 
0.3991 -1.6042 
0.4135 -1.9152 
0.4097 -2.2163 
0.3876 -2.4996 
0.3472 -2.7557 
0.4160 -1.2751 
0.4633 -1.6223 
0.4895 -1.9662 
0.4956 -2.3030 
0.4814 -2.6236 
0.4351 -2.6804 
0.4639 -1.2578 
0.5409 -1.6703 
0.5917 -2.0615 
0.6210 -2.4961 
0.5957 -2.8116 
0.5110 -1.2399 
0.6521 -1.7930 
0.7667 -2.3749 
0.7175 -2.6358 
0.5295 -1.2324 
0.7214 -1.8975 
0.8840 -2.6049 

0.2708 -1.3236 
0.2653 -1.2843 
0.2549 -1.2283 
0.2406 -1.1573 
0.2236 -1.0744 
0.2050 -0.9842 
0.3192 -1.3079 
0.3125 -1.2676 
0.2998 -1.2113 
0.2824 -1.1403 
0.2620 -1.0574 
0.2397 -0.9667 
0.3677 -1.2917 
0.3590 -1.2490 
0.3428 -1,1900 
0.3212 -1.1155 
0.2959 -1.0276 
0.2689 -0.9308 
0.4160 -1.2751 
0.4039 -1.2276 
0.3825 -1.1619 
0.3542 -1.0774 
0.3214 -0.9757 
0.2884 -0.8749 
0.4630 -1.2578 
0.4459 -1.2009 
0.4152 -1.1199 
0.3743 -1.0097 
0.3313 -0.8990 
0.5110 -1.2399 
0.4804 -1.1612 
0.4270 -1.0343 
0.3736 -0.9402 
0.5295 -1.2324 
0.4888 -1.1352 
0.4147 -0.9645 

have to change the labelling for the excited states and thus we must perform Bleaney's 
transformation (Bleaney 1959) on their g-values. 

5. Summary 

A systematic and nearly exact solution of the acceptor problem is achieved by group 
theoretical considerations and by utilizing the formalism of spherical tensor operators, 
which allowed the symmetry for the various orientations Bll[OOl], [ill], [I101 of the 
magnetic field to be exploited. The whole treatment works within the representations 
of the group 0, and its subgroups C,, C, and C2h, 

A careful analysis of the convergence including contributions of higher total angular 
momenta was described. Thus the Hamiltonian could be represented by a finite matrix 
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Table 8. Energy (in au) and g-values gm,l and gm,? (for a description see text) for 
the State 2Ps/Ja. 

6 

0.65 
0.65 
0.65 
0.65 
0.65 
0.65 
0.70 
0.70 
0.70 
0.70 
0.70 
0.70 
0.75 
0.75 
0.75 
0.75 
0.75 
0.75 
0.80 
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0.05 
0.10 
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0.00 
0.05 
0.10 

E #:,z g$,a g$,i 

0.4059 -0.0731 -0.8091 0.0894 
0.4231 -0.1836 -0.4492 0.0899 
0.4453 -0.2689 -0.0847 0.0866 
0.4739 -0.3252 0.2779 0.0788 
0.5112 -0.3499 0.6326 0.0656 
0.5613 -0.3419 0.9782 0.0467 
0.4606 -0.0217 -0.7606 0.0265 
0.4827 -0.1385 -0.3663 0.0273 
0.5127 -0.2253 0.0292 0.0241 
0.5531 -0.2806 0.4253 0.0158 
0.6089 -0.3032 0.8215 0.0013 
0.6887 -0.2932 1.2217 -0.0203 
0.5386 0.0296 -0.7133 -0.0362 
0.5680 -0.1026 -0.2640 -0.0360 
0.6131 -0.1981 0.1823 -0.0401 
0.6766 -0.2589 0.6352 -0.0502 
0.7713 -0.2863 1.1019 -0.0683 
0.9239 -0.2817 1.5907 -0.0963 
0.6573 0.0798 -0.6678 -0.0976 
0.7037 -0.0827 -0.1303 -0.0997 
0.7774 -0.1990 0.4003 -0.1064 
0.8950 -0.2782 0.9526 -0.1210 
1.0989 -0.3253 1.5426 -0.1476 
1.5293 -03299 2.1374 -0.1913 
0.8571 0,1284 -0.6249 -0.1569 
0.9406 -0.0932 0.0637 -0.1641 
1,0950 -0.2562 0.7482 -0.1769 
1.3981 -0.3852 1.4934 -0,2029 
2.1960 -0.4487 2.2047 -0.2567 
1.2593 0.1746 -0.5848 -0.2134 
1.4678 -0.1761 0.4073 -0.2322 
2.0064 -0.4631 1.4449 -0.2613 
4.4312 -0.4980 2.0384 -0.3436 
1.5617 0.1925 -0.5695 -0.2353 
1.9235 -0.2594 0.6522 -0.2630 
3.2363 -0.6477 1.9544 -0.3120 

" : Z  

0.9889 
0.9781 
0.9475 
0.9005 
0.8418 
0.7771 
0.9296 
0.9253 
0.9009 
0.8605 
0.8092 
0.7533 
0.8718 
0.8748 
0.8565 
0.8223 

0.7342 
0.8163 
0.8284 
0.8168 
0.7889 
0.7556 
0.7530 
0.7637 
0.7886 
0.7853 
0.7680 
0.8006 
0.7147 
0.7616 
0.7730 
0.9178 
0.6961 
0.7581 
0.7957 

0.1-m 

Table 0. g-values g: and g; (for a description see text) of the states 1S3/2r8, 
2P3/&, 2P,/zTs for Ge and GaAs. 

is3/2r8 -0.5904 0.2257 0.2081 0.1147 
-1.1339 0.8190 0.2445 0.2093 

2 ~ , ~ ~ r ~  -2.1434 1.8577 -1.7068 1.2305 

of differential operators, which was diagonalized numerically by the matrix method. 
By this procedure we gained energy levels and envelope functions. The latter were 
used for calculating transition probabilities in the dipole approximation. The selection 
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rules for transitions between the states of Oh, C,,, C, or C,, symmetry were also 
found by group theoretical means. 

By calculating Zeeman sublevels and line intensities for transitions between these 
levels we were able to present a conclusive interpretation of the experimental data on 
Ge and GaAs without making use of screening effects for the acceptor potential. For 
Ge we used Luttinger parameters that are well known from quite different experiments. 
The agreement between the calculated and experimental results is good for the G and 
D lines. The splitting of the C l i e  is shown to be very complicated because for 
finite magnetic fields the initial states are mixtures of the sublevels of 2P,$, and 
3P3,21"8. Agreement with experiment is equally good. As the Luttinger parameters 
for GaAs are not as well known as those for Ge we had to fit the Luttinger parameters 
to experiment. Our results (see table 5) should be reliable, because (1) the Zeeman 
splitting depends sensitively on the Luttinger parameters and (2) we could make use 
of some experimentally determined spectra for different orientations of the magnetic 
field. Finally the Zeeman splitting of the carbon G and D lines could be explained 
successfully for GaAs. 

We tabulated the g-values for a physically relevant interval of Luttinger parame- 
ters. From these g-values the linear Zeeman splitting of the G and D lines could be 
approximately calculated at least for magnetic fields up to onefifth of the correspond- 
ing effective unit. 

Appeudix 

A l .  Angular momentum recoupling schemes 

When performing the substitution k(') -+ k(') - ( i /a ) (B( ' )  x r('))(') in Hamiltonian 
H (1) we get an expression with an intricate dependence on the flux density where 
Et') is found at  the innermost of the multiple brackets. The ordering of these brackets 
can be altered by applying the angular momentum recoupling formulae that allow us 
to change between different coupling schemes for three or four angular momenta (e.g. 
between [(jljz)j ,j3, JM) and /j1(j2j3)jz3, JM)). For the spherical tensors AGL), 
Be.), CO'.), Du4 5 these formulae read: 
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Ad. Reduced matriz elements 

U' 0 G Schmilt et al 
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